ENGINEERING MATHEMATICS (M1)

About M1: This course is mostly continuation of the concepts you learned in class 12th but the focus is shifted towards the application part of concepts. So easy if compared with M-II and M-III. But the learning methodology includes regular practice of the concepts. To equip students with techniques to understand advanced level mathematics and its application part.

Examination Scheme

In-Semester Exam :30 Marks End-Semester Exam :70 Marks Team Work (TW) :25 Marks

Course Contents:

Unit I: Differential Calculus

Rolle's Theorem, Mean Value Theorems, Taylor's Series and Maclaurin's Series, Expansion of functions using standard expansions, Indeterminate Forms, L' Hospital's Rule, Evaluation of Limits and Applications.

Unit II: Fourier Series

Definition, Dirichlet's conditions, Full range Fourier series, Half range Fourier series, Harmonic analysis, Parseval's identity and Applications to problems in Engineering.

Unit III: Partial Differentiation

Introduction to functions of several variables, Partial Derivatives, Euler's Theorem on Homogeneous functions, Partial derivative of Composite Function, Total Derivative, Change of Independent variables.

Unit IV: Applications of Partial Differentiation

Jacobian and its applications, Errors and Approximations, Maxima and Minima of functions of two variables, Lagrange's method of undetermined multipliers.

Unit V: Linear Algebra-Matrices, System of Linear Equations

Rank of a Matrix, System of Linear Equations, Linear Dependence and Independence, Linear and Orthogonal Transformations, Application to problems in Engineering.

Unit VI: Linear Algebra-Eigen Values and Eigen Vectors, Diagonaliztion

Eigen Values and Eigen Vectors, Cayley Hamilton theorem, Diagonaliztion of a matrix, Reduction of Quadratic forms to Canonical form by Linear and Orthogonal transformations.